4.3 Article

Theoretical insights about inhibition efficiencies of some 8-Hydroxyqionoline derivatives against the corrosion of mild steel

Journal

MOLECULAR SIMULATION
Volume 46, Issue 17, Pages 1398-1404

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/08927022.2020.1834102

Keywords

Quantum chemical calculations; DFT; Molecular Dynamics Simulation; Hydroxyqionoline derivatives; Fe (110) surface

Ask authors/readers for more resources

In the present study, we theoretically analysed the corrosion inhibition performances of some novel 8-Hydroxyqionoline derivatives, namely 5-(((2-hydroxyethyl) thio) methyl) quinolin-8-ol (Q-OH) and 5-(((2-aminoethyl) thio) methyl) quinolin-8-ol (Q-NH2) against the corrosion of mild steel. In the section about DFT and HF calculations of the study, quantum chemical descriptors like frontier orbital energies, HOMO-LUMO energy gap, chemical hardness, electronegativity, softness, chemical potential, electrophilicity, nucleophilicity, proton affinity, electrons transferred from inhibitor to metal surface, electron-donating power, electron-accepting power, dipole moment, polarisability regarding protonated and neutral forms of the mentioned molecules were calculated and commented. In the section including the use of Molecular Dynamics Simulation approach of the analysis, adsorption behaviours of studied organic molecules on Fe (110) surface were investigated. To detect the power of the interactions between novel 8-Hydroxyqionoline derivatives and the mentioned metal surface, adsorption energy and binding energy values were calculated. It is important to note that these resuls determined are in good agreement with experimentally observed results. In addition to these analyses made, the validities of chemical reactivity principles such as Maximum Hardness, Minimum Polarisability and Minimum Electrophilicity Principles in corrosion inhibition studies were also reported.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available