4.7 Article

Cell-free styrene biosynthesis at high titers

Journal

METABOLIC ENGINEERING
Volume 61, Issue -, Pages 89-95

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2020.05.009

Keywords

Cell-free; In vitro; CFPS; Styrene; Biomanufacturing

Funding

  1. Department of Energy (BER grant) [DE-SC0018249]
  2. David and Lucile Packard Foundation [2011-37152]
  3. Camile Dreyfus Teacher-Scholar Program
  4. NDSEG [ND-CEN-017-095]
  5. Joint Genome Institute Community Science Program Project [503280]
  6. Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

Styrene is an important petroleum-derived molecule that is polymerized to make versatile plastics, including disposable silverware and foamed packaging materials. Finding more sustainable methods, such as biosynthesis, for producing styrene is essential due to the increasing severity of climate change as well as the limited supply of fossil fuels. Recent metabolic engineering efforts have enabled the biological production of styrene in Escherichia coli, but styrene toxicity and volatility limit biosynthesis in cells. To address these limitations, we have developed a cell-free styrene biosynthesis platform. The cell-free system provides an open reaction environment without cell viability constraints, which allows exquisite control over reaction conditions and greater carbon flux toward product formation rather than cell growth. The two biosynthetic enzymes required for styrene production were generated via cell-free protein synthesis and mixed in defined ratios with supplemented L-phenylalanine and buffer. By altering the time, temperature, pH, and enzyme concentrations in the reaction, this approach increased the cell-free titer of styrene from 5.36 +/- 0.63 mM to 40.33 +/- 1.03 mM, the highest amount achieved using biosynthesis without process modifications and product removal strategies. Cell-free systems offer a complimentary approach to cellular synthesis of small molecules, which can provide particular benefits for producing toxic molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available