4.7 Article

Dynamic perforation of lightweight armor: Temperature-dependent plasticity and fracture of aluminum 7020-T6

Journal

MECHANICS OF MATERIALS
Volume 149, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mechmat.2020.103537

Keywords

Ductile fracture; Stress triaxiality; Lode parameter; Yld2000; Dynamic perforation; Hopkinson bars

Ask authors/readers for more resources

The design of armored vehicles requires reliable constitutive models that are valid over a wide range of strain rates and temperatures. A comprehensive experimental program is executed to characterize the stress-strain response of high strength aluminum 7020-T6 at temperatures ranging from 20 degrees C to 320 degrees C. It includes tensile experiments on uniaxial, notched, central hole and shear specimens. Aside from low and intermediate strain rate experiments, high strain rate experiments are performed on a Split Hopkinson Pressure Bar (SHPB) system equipped with a load inversion device. Furthermore, hemispherical punch and V-bending experiments are performed to achieve equi-biaxial tension and transverse plane strain conditions. It is found that a Yld2000-3d plasticity model with isotropic strain hardening and thermal softening is suitable to describe the large deformation response, while a rate- and temperature-independent Hosford-Coulomb model is used to predict fracture. Impact experiments are performed on 4 mm thick targets with blunt, hemispherical and conical steel projectiles of 8 mm diameter and a mass of 13.8 g. The impact velocity is varied such that the full spectrum from the ballistic limit to complete penetration can be characterized. In addition, perpendicular and oblique configurations are considered. Numerical simulations are performed for all experiments confirming the validity of the identified constitutive model and providing unmatched insight into the dynamic penetration failure mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available