4.7 Article

Advanced lattice material with high energy absorption based on topology optimisation

Journal

MECHANICS OF MATERIALS
Volume 148, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.mechmat.2020.103536

Keywords

Lattice material; Topology optimisation; Energy absorption capability; Cuttlebone; Compressive behaviour

Funding

  1. China Scholarship Council (CSC)
  2. University of Manchester (UoM) [201706370205]

Ask authors/readers for more resources

As ordered cellular materials, lattice materials are excellent lightweight candidates for impact energy/shock absorbing applications. This study aims to explore an advanced lattice material with objective of maximum energy absorption based on topology optimisation. Effects of cell-wall material and mass fraction on topological results are analysed. Generally, a cuttlebone-like lattice (CLL) material is obtained and its deformation behaviour and compressive properties under impact loads are investigated. The results show that the CLL material undergoes a buckling-dominated and layer-by-layer deforming process, irrespective of cell-wall materials and relative densities. The compressive properties of the as-designed lattice material versus relative density can be described by the Gibson-Ashby power law. Impressively, the CLL material outperforms a broad range of existing cellular materials in terms of relative collapse strength, relative elastic modulus and specific energy absorption, which are significantly enhanced by 141.96%, 203.01% and 174.06%, respectively, comparing with Octet lattice material. It is expected that this newly designed lattice material with tailored mechanical properties can act as an excellent impact energy/shock absorber.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available