4.7 Article

Deep learning for prognostics and health management: State of the art, challenges, and opportunities

Journal

MEASUREMENT
Volume 163, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.measurement.2020.107929

Keywords

Prognostics and health management; Deep learning; Fault diagnosis; Anomaly detection; Domain adaptation

Ask authors/readers for more resources

Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This paper provides a systematic review of state-of-the-art deep learning-based PHM frameworks. It emphasizes on the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. In addition, limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available