4.7 Article

Evaluation of turned and milled surfaces roughness using convolutional neural network

Journal

MEASUREMENT
Volume 161, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.measurement.2020.107860

Keywords

Surface roughness evaluation; Turned and milled surfaces; Machine vision; Convolutional neural network; Loss functions

Ask authors/readers for more resources

Existing computer vision methods to measure surface roughness rely on feature extraction to quantify the surface morphology and build prediction models. However, the feature extraction is a complicated process requiring advanced image filtering and segmentation steps, resulting in long prediction time and complex setup. This study proposes the use of convolutional neural network to evaluate the surface roughness directly from the digital image of surface textures. This method avoids feature extraction since this step is integrated inside the network during the convolution process. Five loss functions for the prediction models are selected and analyzed based on their suitability and accuracy. The predicted values obtained are compared to the actual surface roughness values measured using a stylus-based profilometer. The performance of the proposed model is evaluated for the prediction of the surface roughness of typical machining operations, such as outside diameter turning, slot milling, and side milling, at various cutting conditions. (C) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available