4.3 Article

Enhancing degradability, bioactivity, and osteocompatibility of poly (propylene fumarate) bone filler by incorporation of Mg-Ca-P nanoparticles

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2020.111038

Keywords

Poly(propylene fumarate) (PPF); Magnesium calcium phosphate (MCP); Nanocomposite; Degradability; Bioactivity; Biocompatibility

Ask authors/readers for more resources

As an alternative for polymethyl methacrylate, poly(propylene fumarate) (PPF) has been considered as injectable and biodegradable bone cement; however, its mechanical and biological properties need more attention. Hence, the current study aimed to develop the properties by compositing PPF with magnesium calcium phosphate (MCP) nano-powders. In this regard, the pure PPF was compared with PPF/MCP by evaluating their composition, mechanical properties, hydrophilicity, and biodegradability. Furthermore, their bioactivity in the simulated body fluid (SBF) and, via applying MG-63 cells, their cell interaction, including proliferation, adhesion, differentiation, and mineralization, were assessed. The addition of MCP improved compressive strength and elastic modulus of PPF, e.g., 10 wt% MCP increased them to 32.7 and 403 MPa, respectively. Also, hydrophilicity and biodegradation of PPF were enhanced in the presence of MCP; so that the highest hydrophilicity, 42% higher than PPF, was achieved at the presence of 20 wt% MCP. In this condition, after 21-day immersion in SBF, the surface of the sample was covered with a dense and continuous layer of hydroxyapatite. The composite proliferation, adhesion, differentiation, and mineralization of MG-63 cells improved in comparison to the pure PPF. Hence, controllable strength and biodegradation of the composite, along with its proved bioactivity and osteoconductivity, make PPF/MCP as a candidate for bone therapeutic application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available