4.7 Article

A pseudo-kinetic model to simulate phase changes in gas hydrate bearing sediments

Journal

MARINE AND PETROLEUM GEOLOGY
Volume 120, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.marpetgeo.2020.104519

Keywords

Gas hydrate; Hydrate dissociation; Hydrate formation; Ice formation/melting; Phase transitions; Numerical modeling; Validation

Funding

  1. NETL (National Energy Technology Laboratory, DOE, USA) [DE-FE0013889]

Ask authors/readers for more resources

Modeling of the phase transitions anticipated in gas hydrate bearing sediments (GHBS) is critical for a proper understanding of time-dependent changes in states and volumes (e.g. the production of methane from this type of soils). We propose a new pseudo-kinetic approach to simulate the typical phase changes anticipated in GHBS, using published experimental results involving gas hydrate dissociation that are the basis of a widely used kinetic model. The proposed pseudo-kinetic model is formulated in the pressure-temperature (P-T) plane and assumes a rate of gas hydrate dissociation (or formation) proportional to the distance between the current state and the phase boundary. The model consists of only one parameter and is simple to implement in numerical simulators. A similar concept is used to model ice formation/thawing phenomena, but based on the ice/liquid-water phase boundary. We implemented the pseudo-kinetic model in a fully coupled thermo-hydro-chemo-mechanical (THCM) finite element code and validated it against experimental results performed on the dissociation of synthetic gas hydrate. We also evaluated the pseudo-kinetic model using synthetic cases covering several scenarios associated with gas hydrate formation/dissociation and ice formation/thawing. The model successfully reproduced the gas production test from a natural GHBS core from Korea (scaled gas venting experiment over 14 h), and also the formation of gas hydrate and ice in permafrost in Alaska (over 2 x 10(6) years).-The analyses show the versatility of the proposed pseudo-kinetic approach by applying it to model the different types of phase transitions typically encounter in GHBS. The simple formulation, easy implementation in numerical simulator, and reduced number of parameters (only one per phase change) make this model an attractive option for simulating phase transformations in problems involving GHBS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available