4.3 Article

Subchronic continuous inhalation exposure to zinc oxide nanoparticles induces pulmonary cell response in mice

Journal

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.jtemb.2020.126511

Keywords

mouse; zinc; nanoparticle; gene; transcription; inhalation

Funding

  1. European Regional Fund FIT Pharmacology, Immunotherapy [P503/12/G147]
  2. [CZ.02.1.01/0.0/0.0/15_003/0000495]

Ask authors/readers for more resources

Objectives: We used mice as an animal model to investigate the entry of ZnO nanoparticles from the ambient air into the lungs and other organs, subsequent changes in Zn levels and the impact on the transcription of Zn homeostasis-related genes in the lungs. Methods: The mice were exposed to two concentrations of ZnO nanoparticles; lower (6.46 x 10(4) particles/cm(3)) and higher (1.93 x 10(6) particles/cm(3)), allowed to breathe the nanoparticles in the air for 12 weeks and subjected to necropsy. Characterization of the ZnO nanoparticles was done using transmission electron microscopy (TEM). Energy-dispersive X-ray (EDX) spectroscopy was used to quantify ZnO nanoparticles in the lungs, brain, liver and kidney. The total zinc content in the lungs, brain, liver, kidney, red blood cells and plasma was estimated by inductively coupled plasma mass spectroscopy (ICP-MS). Transcription rate of the genes was evaluated by RealTime PCR. Results: The two concentration of ZnO nanoparticles in the ambient air produced two different outcomes. The lower concentration resulted in significant increases in Zn content of the liver while the higher concentration significantly increased Zn in the lungs (p < 0.05). Additionally, at the lower concentration, Zn content was found to be lower in brain tissue (p < 0.05). Using TEM/EDX we detected ZnO nanoparticles inside the cells in the lungs, kidney and liver. Inhaling ZnO NP at the higher concentration increased the levels of mRNA of the following genes in the lungs: Mt2 (2.56 fold), Slc30a1 (1.52 fold) and S1c30a5 (2.34 fold). At the lower ZnO nanoparticle concentration, only S1c30a7 mRNA levels in the lungs were up (1.74 fold). Thus the two air concentrations of ZnO nanoparticles produced distinct effects on the expression of the Zn-homeostasis related genes. Conclusion: Until adverse health effects of ZnO nanoparticles deposited in organs such as lungs are further investigated and/or ruled out, the exposure to ZnO nanoparticles in aerosols should be avoided or minimised.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available