4.8 Article

Palladium-Catalyzed Regio- and Enantioselective Hydrosulfonylation of 1,3-Dienes with Sulfinic Acids: Scope, Mechanism, and Origin of Selectivity

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 142, Issue 37, Pages 15860-15869

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c05976

Keywords

-

Funding

  1. National Natural Science Foundation of China [21871150]
  2. Fundamental Research Funds for Central University
  3. China Postdoctoral Science Foundation [2019M660973]

Ask authors/readers for more resources

Chiral sulfones are important structural motifs in organic synthesis because of their widespread use in pharmaceutical chemistry. In particular, chiral allylic sulfones have drawn particular interest because of their synthetic utility. However, enantioselective synthesis of 1,3-disubstituted unsymmetrical chiral allylic sulfones remains a challenge. In this article, we report a protocol for (R)-DTBM-Segphos/Pd-catalyzed regio- and enantioselective hydrosulfonylation of 1,3-dienes with sulfinic acids, which provides atomand step-economical access to 1,3-disubstituted chiral allylic sulfones. The reaction occurs under mild conditions and has a broad substrate scope. Combined experimental and computational studies suggest that the reaction is initiated by a ligand-to-ligand hydrogen transfer followed by a C-S bond reductive elimination via a six-membered transition state. Steric repulsion between the olefinic C-H of the substrate and the tert-butyl group of (R)-DTBM-Segphos was found to be a key factor in the enantiocontrol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available