4.8 Article

An experimental study on thermal runaway characteristics of lithium-ion batteries with high specific energy and prediction of heat release rate

Journal

JOURNAL OF POWER SOURCES
Volume 472, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jpowsour.2020.228585

Keywords

TR; Cylindrical LIBs; Thermal hazards; Flame characteristics; HRR

Funding

  1. Innovate UK
  2. European Union [749512]
  3. Marie Curie Actions (MSCA) [749512] Funding Source: Marie Curie Actions (MSCA)

Ask authors/readers for more resources

Understanding the potential thermal hazards of lithium-ion batteries (LIBs) during thermal runaway (TR) is helpful to assess the safety of LIB during storage, transport and use. This paper presents a comprehensive analysis of the thermal runaway (TR) characteristics of type 21700 cylindrical LIBs with a specific energy of 266 W.h/kg. The batteries with both 30% state of charge (SOC) and 100% SOC were triggered to TR by uniform heating using a flexible heater in a laboratory environment. Three high definition cameras and one high-speed camera were placed to capture TR behavior and flame evolution from different viewpoints. Correlation between the heat release rate (HRR) and the mean flame height of turbulent jet diffusion flame were used to estimate the HRRs of LIBs. Additional characteristics of cell failure (for cells with 100% and 30% SOC) were also noted for comparison, including: number of objects ejected from the cell; sparks and subsequent jet fires. An approach has been developed to estimate the HRRs from TR triggered fires and results compared with previous HRR measurements for type 18650 cylindrical cells with a similar cathode composition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available