4.6 Article

Transport and Interfacial Properties of Mixed Molten Carbonate/Hydroxide Electrolytes by Molecular Dynamics Simulations

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 124, Issue 43, Pages 23532-23540

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.0c07295

Keywords

-

Funding

  1. ExxonMobil Research and Engineering Co. [EM09125.A1]
  2. Office of Basic Energy Sciences, U.S. Department of Energy [DE-SC0002128]

Ask authors/readers for more resources

We use molecular dynamics simulations based on a recently developed force field to obtain the viscosity, ionic conductivity, and liquid-vapor surface tension of molten alkali-metal carbonate-hydroxide mixtures over a range of cation and hydroxide compositions. Recent experimental and simulation studies have suggested that molten carbonates contain non-negligible amounts of hydroxide ions in the presence of water at low partial pressures of CO2. However, due to the high temperatures (similar or equal to 600 degrees C or higher) required to melt pure alkali carbonates and their mixtures, there is a lack of experimental thermodynamic and transport data for these molten phases. Here, we deploy a recently parametrized force field for molten alkali carbonates and hydroxides [J. Chem. Theory Comput. 2020, 16, 5736-5746, DOI: 10.1021/acs.jctc.0c00285] to simulate some physical properties using atomistic molecular dynamics. Our predictions show a consistent decrease in viscosity and an increase in ionic conductivity with increasing hydroxide fractions, whereas a higher Li+ mole fraction leads to an increase in both viscosity and ionic conductivity. The computed surface tension values exhibit an upward trend with higher asymmetry in cation and anion sizes. Structural analysis suggests that in the carbonate-hydroxide melts the smaller/harder ions, OH- and Li+, are more favored at the interface than the larger/softer ions, CO32- and K+/Na+. The current approach provides a systematic route to obtaining physicochemical properties of molten alkali carbonate and hydroxide mixtures over a large domain of chemical compositions and thus can steer future experimental research for molten carbonates and their applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available