4.5 Article

Diffusivity and Structure of Room Temperature Ionic Liquid in Various Organic Solvents

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 124, Issue 44, Pages 9931-9937

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.0c07582

Keywords

-

Funding

  1. Fluid Interface Reactions, Structures, and Transport (FIRST) Center, an Energy Frontier Research Center (EFRC) - U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences

Ask authors/readers for more resources

Room-temperature ionic liquids (RTILs) hold promise for applications in electric double layer capacitors (EDLCs), owing to a much wider potential window, lower vapor pressure, and better thermal and chemical stabilities compared to conventional aqueous and organic electrolytes. However, because the low diffusivity of ions in neat RTILs negates the EDLCs' advantage of high power density, the ionic liquids are often used in mixture with organic solvents. In this study, we measured the diffusivity of cations and anions in RTIL, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) ([BMIM+][TFSI-]), mixed with 10 organic solvents, by using the pulsed-field gradient NMR method. The ion diffusivity was found to follow that of neat solvents and in most studied solvents showed an excellent agreement with the predicted values reported in the recent molecular dynamics (MD) study [Thompson, M. W.; et al. J. Phys. Chem. B 2019, 123, 1340-1347]. In two solvents consisting of long-chain molecules, however, the MD simulations predictions slightly underestimated the ionic diffusivities. The degree of ion dissociation was also estimated for each solvent by comparing the ionic conductivity with the molar conductivity derived from the diffusion measurements. The degree of ion dissociation and the hydrodynamic radius of ions suggest that the ions are coordinated by similar to 1 solvent molecule. The scarcity of solvent-ion interactions explains the fact that the diffusivity of ions in the mixture significantly depends on the viscosity of the solvent.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available