4.8 Review

Coordinating properties of peptides containing histidyl residues

Journal

COORDINATION CHEMISTRY REVIEWS
Volume 327, Issue -, Pages 43-54

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.ccr.2016.04.015

Keywords

Copper(II); Nickel(II); Zinc(II); Histidine; Peptide; Structure

Funding

  1. Hungarian Scientific Research Fund [K 115480]
  2. Richter Gedeon Talentum Foundation

Ask authors/readers for more resources

Numerous studies have demonstrated the high metal binding capacity and selectivity of peptide molecules. The terminal amino group, deprotonated amide nitrogens, and various side chain donor functions are the most common metal binding sites in these complexes. Imidazole-N donors of histidyl residues are especially important for complex formation because their complexes exhibit outstanding thermodynamic stability and high structural variation. Complex formation reactions with simple oligopeptides containing one histidyl residue have already been clarified satisfactorily and the results have been reviewed. However, the coordination chemistry of multihistidine peptides is understood less well, although the relevant molecules have major biological significance. These systems include peptide fragments of prion protein, amyloid-p and various copper(II) or zinc(II) transporter proteins. Recently, much data have been reported about these complexes and the most important results are summarized in this review. The second part of this review describes complex formation by peptides that contain another strongly coordinating side chain (e.g., carboxylates of Asp and Glu, and thiolates of Cys residues) in addition to the histidyl sites. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available