4.6 Article

Silicon nanoparticles: a new and enhanced operational material for nitrophenol sensing

Journal

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS
Volume 31, Issue 19, Pages 17084-17099

Publisher

SPRINGER
DOI: 10.1007/s10854-020-04269-8

Keywords

-

Funding

  1. King Saud University, Riyadh, Saudi Arabia [RSP-2020/113]

Ask authors/readers for more resources

The environmental problem is a big issue in the current scenario because the human beings are affected via natural or manmade sources. Over a range of industrial pollutents, the nitrophenol (referred to as 4-NP) known as harmful industrial chemical for the environment and listed as a carcinogenic compound for human health. To keep this view the present manuscript describes the formation of highly crystalline silicon nanoparticles (Si-NPs) and applied for the electrochemical sensing of 4-NP. The Si-NPs exhibit numerous applications in various directions such as catalyst, solar cells, LEDs, batteries etc. The Si-NPs were formed from the physical approach with using argon-silane mixture in a gas chamber with impregnation of microwave plasma. The processed material was examined through various techniques such as X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and Fourier transform spectroscopy (FTIR). It reveals from the acquired analysis that the size of each NP is similar to 4 nm with good structural and chemical characteristics and applied as a film form against to check the sensing of 4-NP with three electrode system. The electrochemical studies were conducted through cyclic voltammetry (CV) in terms of their low to high concentration (7.8, 15.62, 31. 25, 62.25, 250, 500, 1000 mu M in PBS), scan rate at variable potential was accessed from 5 to 100 mV with Si-NPs based electrode. The sustainability, reproducibility and efficacy of the formed sensor (Si-NPs/GCE) was examined in occurrence with 4-NP (62.25 mu M) for seven consecutive cycles. Including to this, chronoamperometry (0 to 1500s) and electrochemical impedance spectra (7.8-1000 mu M in PBS) were also analyzed. On the basis of acquired results and discussion a probable mechanism was also described.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available