4.6 Article

A new microwave approach for the synthesis of green emitting Mn2+-doped ZnAl2O4: A detailed study on its structural and optical properties

Journal

JOURNAL OF LUMINESCENCE
Volume 226, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.jlumin.2020.117482

Keywords

-

Categories

Funding

  1. National Research Foundation of South Africa [84415]
  2. University of the Free State
  3. National Laser Centre (NLC)
  4. South African Research Chairs Initiative of the Department of Science and Technology

Ask authors/readers for more resources

A simple recipe for synthesizing green emitting Mn2+-doped ZnAl2O4 phosphor has been developed. Metal-organic complexes, with their unique properties, were employed as precursors to obtain phase-pure, nanocrystalline material in the as-prepared form within just 5 min of microwave irradiation. The Mn2+ doping concentration that showed the highest photoluminescence (PL) intensity was optimized and a comprehensive investigation of the structural and optical properties were made for various annealing temperatures. Rietveld refinement of the samples annealed at 1200 degrees C and 1400 degrees C, showed that the cationic inversion in the spinel decreased from 3.4 to 2.1% and this change was validated by the X-ray photoelectron spectroscopy results. XPS confirmed that the inversion for Zn2+, Al3+, and Mn2+ cations decreased with annealing temperature, despite of which, inversion remained at 20%, 10%, and 15%, respectively for the sample annealed at 1400 degrees C, emphasizing the fact that synthesis plays an important role in controlling the amount of inversion in an otherwise normal spinel. Electron paramagnetic resonance spectra of the as-prepared and the samples annealed at high temperatures confirmed that the Mn2+ hyperfine spectrum was not just a function of the crystal field environment but also strongly depends on the doping concentration. The PL spectrum taken at different annealing temperatures, comprised of the characteristic 4T1 (G) -> 6A1 (S) spin-forbidden Mn2+ transitions, showed that the emission intensity depends on the material crystallinity. The sample annealed at 1400 degrees C displayed a significantly higher PL intensity compared to those annealed at lower temperatures. The variation of PL spectrum of this sample was investigated between 9 K and 300 K to determine the origins of the asymmetry at room temperature and the vibrational sidebands at lower temperatures. The energy levels of the Mn2+ dopant, calculated theoretically and verified experimentally, were used to determine the spectroscopic parameters such as the Racah B and C values and the crystal field energy, Dq. These values showed that the Mn2+ was in a weak tetrahedral field. This work demonstrates a technologically important, green, and swift technique in synthesizing phosphors for various applications in displays, bioimaging, solid state lighting, etc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available