4.5 Article

Evaluation of a Physics-Based Tropical Cyclone Rainfall Model for Risk Assessment

Journal

JOURNAL OF HYDROMETEOROLOGY
Volume 21, Issue 9, Pages 2197-2218

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/JHM-D-20-0035.1

Keywords

Tropical cyclones; Rainfall; Model evaluation/performance

Funding

  1. National Science Foundation (NSF) [1520683]
  2. U.S. Department of Defense (DOD)
  3. U.S. Department of Energy (DOE)
  4. DOD [DE-SC0014664]

Ask authors/readers for more resources

Heavy rainfall generated by landfalling tropical cyclones (TCs) can cause extreme flooding. A physics-based TC rainfall model (TCRM) has been developed and coupled with a TC climatology model to study TC rainfall climatology. In this study, we evaluate TCRM with rainfall observations made by satellite (of North Atlantic TCs from 1999 to 2018) and radar (of 36 U.S. landfalling TCs); we also examine the influence on the rainfall estimation of the key input to TCRM-the wind profile. We found that TCRM can simulate relatively well the rainfall from TCs that have a coherent and compact structure and limited interaction with other meteorological systems. The model can simulate the total rainfall from TCs well, although it often overestimates rainfall in the inner core of TCs, slightly underestimates rainfall in the outer regions, and renders a less asymmetric rainfall structure than the observations. It can capture rainfall distribution in coastal areas relatively well but may underestimate rainfall maximums in mountainous regions and has less capability to accurately simulate TC rainfall in higher latitudes. Also, it can capture the interannual variability of TC rainfall and averaged features of the time series of TC rainfall but cannot accurately reproduce the probability distribution of short-term (1 h) rainfall. Among the tested theoretical wind profile inputs to TCRM, a complete wind profile that accurately describes the wind structure in both the inner ascending and outer descending regions of the storm is found to perform the best in accurately generating various rainfall metrics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available