4.7 Article

Variations of electric potential in the xylem of tree trunks associated with water content rhythms

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 72, Issue 4, Pages 1321-1335

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/eraa492

Keywords

Electric potential; rhythm; sap flow; signal; transpiration; tree; water content; water transport; wireless sensor network; xylem

Categories

Funding

  1. National Natural Science Foundation of China [31700642, 31170669]

Ask authors/readers for more resources

Instantaneous electrical responses in plants have been widely studied, but the mechanism of spontaneous, periodic electric potential alternations in the xylem of tree trunks remains controversial. The generation of the electric potential can be explained by the electrode potential, which depends on ion concentrations near electrodes. However, several different hypotheses about its periodic variations have been proposed, including streaming potential, ion diffusion, charge transport, and oxygen turnover.
Instantaneous electrical responses in plants have been widely studied, but the mechanism of spontaneous, periodic electric potential alternations in the xylem of tree trunks remains controversial. The generation of the electric potential can be explained by the electrode potential, which depends on ion concentrations near electrodes. However, several different hypotheses about its periodic variations have been proposed, including streaming potential, ion diffusion, charge transport, and oxygen turnover. Here, we performed long-term measurements on the electric potential and water content in the xylem of trees, and observed changes in the electric potential and transpiration rate in response to varied numbers of leaves, light radiation, temperature, and relative air humidity. The electric potential showed a distinct seasonal trend, combined with daily rhythms, and could be affected by environmental changes. Rapid changes in the electric potential routinely lagged behind those of the transpiration rate, but their ranges of change were proportional. Both annual and diurnal patterns of the electric potential were synchronous with the trees' water content. Moreover, we found potential function relationships between the electric potential and water content. Accordingly, we propose a new perspective, that the variations of the electric potential in tree xylem could be associated with water content rhythms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available