4.7 Article

Effect of Biomechanical Environment on Degeneration of Meckel's Cartilage

Journal

JOURNAL OF DENTAL RESEARCH
Volume 100, Issue 2, Pages 171-178

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034520960118

Keywords

mechanotransduction; tissue engineering; extracellular matrix; chondrocyte burst; hydrogel; biomimetics

Ask authors/readers for more resources

This study systematically investigated the changes in Meckel's cartilage during embryonic development, revealing the distinct effects of biomechanical cues on its fate. The surrounding biomechanical properties play a crucial role in guiding the mineralization and degradation of Meckel's cartilage, which could be valuable for tissue engineering applications.
During orofacial tissue development, the anterior and posterior regions of the Meckel's cartilage undergo mineralization, while the middle region undergoes degeneration. Despite the interesting and particular phenomena, the mechanisms that regulate the different fates of Meckel's cartilage, including the effects of biomechanical cues, are still unclear. Therefore, the purpose of this study was to systematically investigate the course of Meckel's cartilage during embryonic development from a biomechanical perspective. Histomorphological and biomechanical (stiffness) changes in the Meckel's cartilage were analyzed from embryonic day 12 to postnatal day 0. The results revealed remarkable changes in the morphology and size of chondrocytes, as well as the occurrence of chondrocyte burst in the vicinity of the mineralization site, an often-seen phenomenon preceding endochondral ossification. To understand the effect of biomechanical cues on Meckel's cartilage fate, a mechanically tuned 3-dimensional hydrogel culture system was used. At the anterior region, a moderately soft environment (10-kPa hydrogel) promoted chondrocyte burst and ossification. On the contrary, at the middle region, a more rigid environment (40-kPa hydrogel) enhanced cartilage degradation by inducing a higher expression of MMP-1 and MMP-13. These results indicate that differences in the biomechanical properties of the surrounding environment are essential factors that distinctly guide the mineralization and degradation of Meckel's cartilage and would be valuable tools for modulating in vitro cartilage and bone tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available