4.4 Article

Computation of Discrete Medial Axis Using Local Search in Domain Delaunay Triangulation of a Solid

Publisher

ASME
DOI: 10.1115/1.4048125

Keywords

medial axis transform; Delaunay triangulation; Voronoi diagram; mesh representation; solid modeling; computational geometry

Ask authors/readers for more resources

The proposed method finds the correct MAT points by searching for them in the vicinity of Voronoi vertices and identifying the corresponding footpoints, allowing for the determination of points on the medial axis without being influenced by sampling density.
A new method is proposed to determine the points on the medial axis transform (MAT) of an object from its surface mesh representation. Current art typically uses a Voronoi diagram-based approach to generate the medial axis of a given point cloud on the boundary of the object or a surface mesh representation as input. This approach defines the MAT points as a subset of the Voronoi vertices close to the medial axis, where the accuracy and density of the points on the medial axis depend on the sampling density of the input point cloud representation. Therefore, the set of medial axis points is incomplete and may lack various topological features of the MAT and its reconstruction property. Instead of filtering the Voronoi vertices that are not medial points, the method proposed in this paper searches for the correct MAT point in the vicinity of such Voronoi vertices and finds the pair of corresponding footpoints using the properties of the MAT point. Hence, the algorithm can determine points on the medial axis without being dependent on the given sampling density and even in the presence of inputs having non-manifold entities. As the MAT points are generated based on the definition of medial axis (MA), the result obtained is accurate to within a specified tolerance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available