4.6 Article

Core-shell structured magnetic covalent organic frameworks for magnetic solid-phase extraction of diphenylamine and its analogs

Journal

JOURNAL OF CHROMATOGRAPHY A
Volume 1629, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.chroma.2020.461476

Keywords

Covalent organic frameworks; Magnetic solid-phase extraction; HPLC-DAD; Diphenylamine, Analogs

Funding

  1. National Natural Science Foundation of China [21904109]
  2. Luzhou science and technology bureau innovation miao sub-project [2019-RCM-92]

Ask authors/readers for more resources

Core-shell structured magnetic covalent organic frameworks (Fe3O4@COFs) were synthesized via a facile approach at room temperature using 1,3,5-tris(4-aminophenyl)benzene (TAPE) and 2,5-dibromo-1,4-benzenedicarboxaldehyde (DBDA) as two building blocks for the first time. The Fe3O4@COFs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), nitrogen adsorptiondesorption isotherms, and zeta potentiometric analysis. The Fe3O4@COFs had a high specific surface area (141.94 m(2).g(-1)) and uniform pore size distribution (average 4.53 nm). They also demonstrated good magnetic response (32.49 emu.g(-1)) and good thermal and chemical stabilities. Furthermore, adsorption experiments were conducted to evaluate the adsorption capacities and adsorption times of Fe3O4@COFs to diphenylamine (DPA) and its analogs, including benzidine (BZ), 1-naphthylamine (1-NA), 4-phenylphenol (4-PP), and O-tolidine (O-TD). From the experimental results, the maximum adsorption capacities of DPA, 1-NA, 4-PP, BZ, and O-TD were calculated as 246.25, 95.20, 85.85, 107.20, and 123.55 mg.g(-1), respectively. A duration of 20 min was sufficient for adsorption. The Fe3O4@COFs were explored as adsorbents for magnetic solid-phase extraction (MSPE) of DPA and its analogs, and the MSPE parameters, including adsorbent dosage, extraction time, pH, ionic strength, desorption solvent, desorption time, and desorption frequency were optimized. Combined with HPLC using diode-array detection, a simple, fast, and sensitive method was proposed to detect DPA and its analogs, which exhibited good linearity (r >0.9946) in the range of 0.1-100 mu g.mL(-1). Moreover, the low limits of detection (ranging from 0.02 to 0.08 mu g.mL(-1), S/N = 3), low limits of quantitation (ranging from 0.05 to 0.30 mu g.mL(-1), S/N = 10), good precision with low relative SDs (<5.86% for intra-day and <6.44% for inter-day) were obtained. Finally, Fe3O4@COFs were applied to the effective MSPE of DPA and its analogs in actual samples chosen from the natural environment, and good recoveries (ranging from 79.97 to 122.52%) were observed. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available