4.7 Article

Accelerated Estimation of Long-Timescale Kinetics from Weighted Ensemble Simulation via Non-Markovian Microbin Analysis

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 16, Issue 11, Pages 6763-6775

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.0c00273

Keywords

-

Funding

  1. NIH [R01GM115805]

Ask authors/readers for more resources

The weighted ensemble (WE) simulation strategy provides unbiased sampling of nonequilibrium processes, such as molecular folding or binding, but the extraction of rate constants relies on characterizing steady-state behavior. Unfortunately, WE simulations of sufficiently complex systems will not relax to steady state on observed simulation times. Here, we show that a postsimulation clustering of molecular configurations into microbins using methods developed in the Markov State Model (MSM) community can yield unbiased kinetics from WE data before steady-state convergence of the WE simulation itself. Because WE trajectories are directional and not equilibrium distributed, the history-augmented MSM (haMSM) formulation can be used, which yields the mean first-passage time (MFPT) without bias for arbitrarily small lag times. Accurate kinetics can be obtained while bypassing the often prohibitive convergence requirements of the nonequilibrium weighted ensemble. We validate the method in a simple diffusive process on a two-dimensional (2D) random energy landscape and then analyze atomistic protein folding simulations using WE molecular dynamics. We report significant progress toward the unbiased estimation of protein folding times and pathways, though key challenges remain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available