4.7 Article

N5-Scaling Excited-State-Specific Perturbation Theory

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 16, Issue 10, Pages 6132-6141

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.0c00308

Keywords

-

Funding

  1. National Science Foundation's CAREER program [1848012]
  2. National Science Foundation Graduate Research Fellowship Program [DGE 1752814]
  3. Direct For Mathematical & Physical Scien [1848012] Funding Source: National Science Foundation
  4. Division Of Chemistry [1848012] Funding Source: National Science Foundation

Ask authors/readers for more resources

We show that by working in a basis similar to that of the natural transition orbitals and using a modified zeroth-order Hamiltonian, the cost of a recently introduced perturbative correction to excited-state mean field theory can be reduced from seventh to fifth order in the system size. The (occupied)(2)(virtual)(3) asymptotic scaling matches that of ground-state second-order Moller-Plesset theory but with a significantly higher prefactor because the bottleneck is iterative: it appears in the Krylov-subspace-based solution of the linear equation that yields the first-order wave function. Here, we discuss the details of the modified zeroth-order Hamiltonian we use to reduce the cost and the automatic code generation process we used to derive and verify the cost scaling of the different terms. Overall, we find that our modifications have little impact on the method's accuracy, which remains competitive with singles and doubles equation-of-motion coupled cluster.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available