4.7 Article

Revisiting Competing Paths in Electrochemical CO2 Reduction on Copper via Embedded Correlated Wavefunction Theory

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 16, Issue 10, Pages 6528-6538

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.0c00583

Keywords

-

Funding

  1. Advanced Scientific Computing Research Program - U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-05CH11231]

Ask authors/readers for more resources

We re-evaluate two key steps in the mechanism of CO2 reduction on copper at a higher level of theory capable of correcting inherent errors in density functional theory (DFT) approximations, namely, embedded correlated wavefunction (ECW) theory. Here, we consider the CO reduction step on Cu(111), which is critical to understanding reaction selectivity. We optimize embedding potentials at the periodic plane-wave DFT level using density functional embedding theory (DFET). All possible adsorption sites (adsites) for each adsorbate then are screened with ECW theory at the catalytically active site to refine the local electronic structure. Unsurprisingly, DFT and ECW theory predict different adsite preferences, largely because of DFT's inability to properly situate the CO 2 pi* level. Differing preferred adsites suggest that different reaction pathways could emerge from DFT versus ECW theory. Starting from these preferred ECW theory adsites, we then obtain reaction pathways at the plane-wave DFT level using the climbing-image nudged elastic band method to determine minimum energy paths. Thereafter, we perform ECW calculations at the catalytically active site to correct the energetics at each interpolated structure (image) along the reaction pathways. Via this approach, we confirm that the first step in CO reduction via hydrogen transfer on Cu(111) is to form hydroxymethylidyne (*COH) instead of formyl (*CHO). Although the prediction to preferentially form *COH is consistent with that of DFT, the two theories predict quite different structural and mechanistic behaviors, suggesting that verification is needed for other parts of the mechanism of CO2 reduction, which is the subject of ongoing work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available