4.7 Article

Cherry-picking resolvents: A general strategy for convergent coupled-cluster damped response calculations of core-level spectra

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 153, Issue 14, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0020843

Keywords

-

Funding

  1. U.S. National Science Foundation [CHE-1856342]

Ask authors/readers for more resources

Damped linear response calculations within the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) framework usually diverge in the x-ray regime. This divergent behavior stems from the valence ionization continuum in which the x-ray response states are embedded. Here, we introduce a general strategy for removing the continuum from the response manifold while preserving important spectral properties of the model Hamiltonian. The strategy is based on decoupling the core and valence Fock spaces using the core-valence separation (CVS) scheme combined with separate (approximate) treatment of the core and valence resolvents. We illustrate this approach with the calculations of resonant inelastic x-ray scattering (RIXS) spectra of benzene and para-nitroaniline using EOM-CCSD wave functions and several choices of resolvents, which differ in their treatment of the valence manifold. The method shows robust convergence and extends the previously introduced CVS-EOM-CCSD RIXS scheme to systems for which valence contributions to the total cross section are important, such as the push-pull chromophores with charge-transfer states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available