4.7 Article

Statistical learning of NMR tensors from 2D isotropic/anisotropic correlation nuclear magnetic resonance spectra

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 153, Issue 13, Pages -

Publisher

AIP Publishing
DOI: 10.1063/5.0023345

Keywords

-

Funding

  1. U.S. National Science Foundation [DIBBS OAC 1640899, CHE 1807922]

Ask authors/readers for more resources

Many linear inversion problems involving Fredholm integrals of the first kind are frequently encountered in the field of magnetic resonance. One important application is the direct inversion of a solid-state nuclear magnetic resonance (NMR) spectrum containing multiple overlapping anisotropic subspectra to obtain a distribution of the tensor parameters. Because of the ill-conditioned nature of this inverse problem, we investigate the use of the truncated singular value decomposition and the smooth least absolute shrinkage and selection operator based regularization methods, which (a) stabilize the solution and (b) promote sparsity and smoothness in the solution. We also propose an unambiguous representation for the anisotropy parameters using a piecewise polar coordinate system to minimize rank deficiency in the inversion kernel. To obtain the optimum tensor parameter distribution, we implement the k-fold cross-validation, a statistical learning method, to determine the hyperparameters of the regularized inverse problem. In this article, we provide the details of the linear-inversion method along with numerous illustrative applications on purely anisotropic NMR spectra, both synthetic and experimental two-dimensional spectra correlating the isotropic and anisotropic frequencies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available