4.2 Article

Multiobjective Optimization of PCP-SAFT Parameters for Water and Alcohols Using Surface Tension Data

Journal

JOURNAL OF CHEMICAL AND ENGINEERING DATA
Volume 65, Issue 12, Pages 5698-5707

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jced.0c00684

Keywords

-

Funding

  1. German Research Foundation (DFG) [EXC 2075]

Ask authors/readers for more resources

With predictive methods, such as classical density functional theory and predictive density gradient theory (pDGT), it is possible to model bulk phase properties and interfacial tensions using the same model. For nonassociating fluids, these models can be used to predict interfacial properties for systems that lack experimental data. For associating components, however, predictions often show large deviations to experiments, which is at least partially rooted in highly correlated pure component parameters. Therefore, we use interfacial properties for discrim- 4 mating pure component parameters by amending the PCP-SAFT parameter estimation for water and alcohols by including surface tension data in the objective function. To obtain a comprehensive comparison between different association models, a multiobjective optimization is performed. By analyzing the resulting pareto fronts, it is shown that including a fitted dipole moment improves the results for water but not for alcohols. The result of the multiobjective optimization is inconclusive about the optimal choice of association scheme for water as the preferred model changes along the pareto front. For small alcohols, in contrast to chemical intuition, the 4C association scheme gives the best results. For longer alcohols, the pareto analysis shows the limits of the homosegmented modeling approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available