4.7 Article

Performance of cementitious materials produced by incorporating surface treated multiwall carbon nanotubes and silica fume

Journal

CONSTRUCTION AND BUILDING MATERIALS
Volume 114, Issue -, Pages 934-945

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.conbuildmat.2016.03.216

Keywords

Carbon nano tube; CNT; Silica fumes; Dispersion; Surface functionalization; SEM; Cement composite; Mortar

Funding

  1. American University of Sharjah Faculty Research Grant [FRG14-2-21]

Ask authors/readers for more resources

The outstanding mechanical properties of carbon nanotubes (CNTs) highlight them as potential candidates for cementitious material reinforcement. However, their low surface friction and the Van der Waals forces of attraction between them, cause the CNTs to aggregate with each other rather than bind with the cement matrix. A number of methods have been investigated by researchers to reduce the aggregation, improve dispersion and activate the graphite surface to enhance its interfacial interaction. These methods involve surface functionalization and coating, optimal physical blending, use of surfactant and other admixtures. This research investigates the use of silica fumes (an admixture), surface functionalized CNTs and cement paste to overcome those obstacles. CNTs with polar impurities end groups OH and COOH were examined. Mortar samples with non-functionalized CNTs dispersed in water solution, another with non-dispersed, non-functionalized CNTs, and a third batch with no CNTs (as control) was used also studied. Silica fumes volume fraction was varied from 0 to 30% to determine its effect. Compressive and flexural strengths of the different mixes were measured and compared. Qualitative analysis using Scanning Electron Microscope (SEM) and Energy-Dispersive Spectroscopy (EDS) were carried out to study the morphology of each mix. Results reveal a much higher enhancement in strength both compressive and flexural strengths for the functionalized CNTs with 30% silica fumes over the other samples. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available