4.6 Article

Encapsulation ofRhodopseudomonas palustrisKTSSR54using beads from alginate/starch blends

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 138, Issue 12, Pages -

Publisher

WILEY
DOI: 10.1002/app.50084

Keywords

biopolymers; morphology; renewable polymers; rheology

Funding

  1. Center of Excellence on Biodiversity (BDC), Office of Higher Education Commission [BDC-PG1-160002]
  2. Faculty of Science, Prince of Songkla University, Thailand

Ask authors/readers for more resources

Blending alginate with starch to prepare hydrogels creates a more suitable matrix for cell entrapment, with starch helping beads retain their spherical shape and increasing cell encapsulation efficiency.
Alginate beads are a promising carrier for biofertilizer delivery, but still possess drawbacks of low mechanical strength and bead shrinkage that result in poor appearance and inadequate cell protection. Blending alginate with starch was proposed as a solution to these problems, and here alginate hydrogels were prepared using a 2% (w/v) alginate dispersion blended with varying contents of gelatinized starch (0-5% w/v). The interaction produced a viscosity synergism that increased the complexity of the matrix network in the alginate/starch blends, producing a more suitable matrix for cell entrapment. Hydrogen bonding between alginate and starch influenced the viscosity of the various solutions in a way that was consistent with the FTIR spectra. The starch content also helped beads retain their spherical shape after drying. The starch supported the entrapment of bacterial cells (plant growth-promoting bacteriumRhodopseudomonas palustrisKTSSR54 as biofertilizer) in the matrix, which reduced cell loss. The highest entrapment efficiency of 70.83% was obtained at 4% (w/v) starch, while the entrapment efficiency of control beads was 50.56%. Overall, the appropriate content of starch mixed with alginate is conducive to changes in the morphology of microcapsules and increases in the amount of biological encapsulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available