4.6 Article

FORC signatures and switching-field distributions of dipolar coupled nanowire-based hysterons

Journal

JOURNAL OF APPLIED PHYSICS
Volume 128, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/5.0020407

Keywords

-

Funding

  1. Agence Nationale de la Recherche (France) [ANR-14-CE07-0025-01]
  2. Agence Nationale de la Recherche (France) under EUR Grant NanoX [ANR-17-EURE-0009]
  3. Agence Nationale de la Recherche (ANR) [ANR-17-EURE-0009] Funding Source: Agence Nationale de la Recherche (ANR)

Ask authors/readers for more resources

Analysis of first-order reversal curves (FORCs) is a powerful tool to probe irreversible switching events in nanomagnet assemblies. As in essence switching events are related to the intrinsic properties of the constituents and their interactions, the resulting FORC diagrams contain much information that can be cross-linked and complex to deconvolute. In order to quantify the relevant parameters that drive the FORC diagrams of arrays of perpendicularly magnetized nanomagnets, we present step-by-step simulations of assemblies of hysterons to determine the specific signatures related to different known inputs. While we explored the consequences of dipolar interactions using either mean field or magnetostatic approaches, we completed by taking the hysteron switching field distribution (SFD) as either normal or lognormal. We demonstrated that the transition between FORC diagrams composed of an isolated interaction field distribution (IFD) and a wishbone shape operates via the SFD deviation, sigma(Hsw), in the presence of a weakly dispersed interaction field. In the presence of a magnetostatic interaction field, the IFD profile is peaked and a coercive field distribution (CFD) sums to the IFD as sigma(Hsw) increases. A transition between IFD + CFD and wishbone shapes is clearly demonstrated as a function of the interaction field deviation sigma(Hint). In addition, we demonstrate that whatever the considered cases, sigma(Hsw) can be quantitatively extracted from the FORC diagrams within an error inferior to 10%. These findings are of interest for dipolar coupled perpendicularly magnetized nanomagnets, as in assemblies of magnetic nanowires and nanopillars, as well as bit patterned media. Published under license by AIP Publishing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available