4.7 Article

Identifying the primary reactions and products of fast pyrolysis of alkali lignin

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jaap.2020.104917

Keywords

Fast pyrolysis; Lignin; Primary reactions; Py-GC/MS/FID

Ask authors/readers for more resources

This study focused on the effect of temperature and residence time on the primary thermal decomposition reactions during a fast pyrolysis of softwood alkali lignin. The use of Py-GC/MS/FID (Micropyrolyser-Gas Chromatography/Mass Spectrometry/Flame Ionization Detector) allowed for rapid heating of the sample and detailed identification and quantification of the pyrolysis products at a temperature range of 400-600 degrees C, with residence times from 0.5-5 s. The identified primary pyrolysis products were mainly volatile guaiacyl-type compounds. There was a general increase in yield for the majority of the volatile compounds with increased temperature and time. The cleavage of the lignin polymer to linear carbonyl (acetaldehyde) and guaiacyl-type aromatic compounds increased with temperature, while that of catechol and cresol type was mainly favoured at 500 and 600 degrees C. Based on these results, a mechanistic pathway for the pyrolytic process was proposed, drawing a linkage from structural units of lignin to the formed primary products. In summary, our findings suggest that the primary decomposition reactions that occur under the fast pyrolysis conditions can be controlled by varying the process temperature and residence time, and deliver mechanistic insight into the product distribution from structurally complex lignin material.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available