4.7 Article

Dengue Virus Infection of Aedes aegypti Alters Extracellular Vesicle Protein Cargo to Enhance Virus Transmission

Journal

Publisher

MDPI
DOI: 10.3390/ijms21186609

Keywords

dengue virus; Aedes aegypti; extracellular vesicles

Funding

  1. Boston University
  2. National Emerging Infectious Diseases

Ask authors/readers for more resources

Dengue is the most burdensome vector-borne viral disease in the world. Dengue virus (DENV), the etiological cause of dengue, is transmitted primarily by the Aedes aegypti mosquito. Like any arbovirus, the transmission cycle of dengue involves the complex interactions of a multitude of human and mosquito factors. One point during this transmission cycle that is rich in these interactions is the biting event by the mosquito, upon which its saliva is injected into the host. A number of components in mosquito saliva have been shown to play a pivotal role in the transmission of dengue, however one such component that is not as well characterized is extracellular vesicles. Here, using high-performance liquid chromatography in tandem with mass spectrometry, we show that dengue infection altered the protein cargo of Aedes aegypti extracellular vesicles, resulting in the packaging of proteins with infection-enhancing ability. Our results support the presence of an infection-dependent pro-viral protein packaging strategy that uses the differential packaging of pro-viral proteins in extracellular vesicles of Ae. aegypti saliva to promote transmission. These studies represent the first investigation into the function of Ae. aegypti extracellular vesicle cargo during dengue infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available