4.7 Article

Analytical solutions of heat storage and heat transfer performance ofparallel-plateregenerators in Stirling cycle

Journal

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume 45, Issue 2, Pages 3327-3342

Publisher

WILEY
DOI: 10.1002/er.6030

Keywords

heat storage efficiency; heat transfer coefficient; parallel-plate regenerator; Stirling cycle

Funding

  1. Fundamental Research Funds for the Central Universities [2017XKZD05]

Ask authors/readers for more resources

The relative thickness e plays a crucial role in the heat storage efficiency and heat transfer coefficient of parallel-plate regenerators (PPR), and by comprehensively considering e, the performance of PPR can be optimized.
Parallel-plate regenerators (PPR), with flow resistance lower than traditional wire-mesh regenerators, can improve the thermal efficiency of Stirling engines (SEs). However, as working frequency or plate thickness increase, the heat cannot penetrate into the plate effectively, resulting only the surface part of the plates to have substantial temperature variation, while the internal part fails to store and exchange heat energy. In order to obtain high performance of PPR, the heat storage efficiency and the heat transfer coefficient, as well as their influential factors, are theoretically studied. Three parameters are found to play an important role, which are working frequency, plate thickness, and thermal diffusivity of materials. Their roles can be represented by a dimensionless parameter as a whole, which is the relative thickness,e. By the critical value of relative thickness,e(cr)= 2.4, two distinct working conditions can be divided, thermally penetrated condition ase < e(cr)and thermally non-penetrated condition ase > e(cr). Under thermally penetrated condition, the heat storage efficiency is high, and the heat transfer coefficient is high enough whene > 1.6, while under thermally non-penetrated condition, the heat storage efficiency is low. In conclusion, by comprehensively considering the heat storage efficiency and heat transfer coefficient, it is recommended that the relative thicknesseshould be chosen within the range [1.6, 2.4].And the optimal working frequency, plate thickness, and suitable material can be determined accordingly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available