4.7 Article

PtCooncontinuous-phasegraphene asPEMfuel cell catalyst

Journal

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume 45, Issue 2, Pages 1673-1684

Publisher

WILEY
DOI: 10.1002/er.5830

Keywords

chemical vapor deposition; continuous phase graphene; electrocatalyst; polymer electrolyte membrane fuel cell; PtCo

Funding

  1. TUBITAK [215M302]

Ask authors/readers for more resources

The research shows that increasing the atomic ratio of PtCo up to 1:3 significantly enhances the electrode activity for both membrane and gas diffusion layer, resulting in higher power densities. In contrast, the best performance for the cathode is achieved with 1:2 and 1:1 PtCo compositions on the membrane and gas diffusion layer respectively.
For the first time, graphene grown by chemical vapor deposition (CVD) process is utilized as catalyst support following transfer onto polymer electrolyte membrane (M) or gas diffusion layer (GDL) as continuous-phase. Thus, agglomeration and stacking of graphene sheets due to van der Waals forces are minimized. The main purpose of this study is investigation of PtCo atomic ratio on continuous-phase graphene for PEM fuel cell. Eight different ratios of Pt (IV) and Co (II) salts are reduced on CVD grown graphene (G) sheet at room temperature using sodium borohydride to obtain varying PtCo nanoparticle compositions. Electrode activity increases with increasing atomic ratio of PtCo up to 1:3 both on membrane and gas diffusion layer for anode with the highest power densities of 1085 mW cm(-2)(1:3-PtCo/G-M) and 1630 m W cm(-2)(1:3-PtCo/G-GDL). For cathode, on the other hand, the highest performances are obtained with 1:2 PtCo/G-M (355 mW cm(-2)at 0.5 V) and 1:1 PtCo/G-GDL (515 mW cm(-2)at 0.5 V) compositions. The results show that the enhanced electrocatalytic activity is obtained at critical atomic ratio of Pt and Co due to changes in Pt-Pt distances, d-electron vacancy and adsorption. Continuous-phase of graphene causes mass transfer limitations at the cathode effecting water removal at high current densities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available