4.2 Article

Investigation of the flow patterns and power requirements in agitated systems: effects of the design of baffles and vessel base

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/ijcre-2020-0046

Keywords

flow patterns; power consumption; shape of baffles; shape of the tank bottom; stirred tank

Ask authors/readers for more resources

The flow patterns and power consumption of a six-blade Rushton turbine (RT) in a cylindrical vessel are characterized in this paper. We focus on the effects of the shape of the vessel base by studying two cases: a conical and a dished shape. In addition, the effects of the height of the vessel base (h(2)) are explored and four cases are considered, namely: h(2)/D = 1/10, 1/6, 1/5 and 1/3 (D: vessel diameter). In the second part of our investigation, a new design of baffles (a triangular-shaped baffle) is suggested and a comparison is made between the performance of the standard and the triangular baffles. The main findings revealed that the conical shape of the vessel base provides a slight enhancement in the axial circulation at almost the same power input for the dished bottomed vessel. For Re < 2 x 10(4), the power required by both types of baffles is the same; however, above this value of Re, a reduction by about 4% in power consumption is given by the standard baffles. Also, and for all shapes of baffles and vessel bases, a reduction in power consumption may be obtained by increasing the height of the vessel base.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available