4.7 Article

Sodium alginate passivated CuInS2/ZnS QDs encapsulated in the mesoporous channels of amine modified SBA 15 with excellent photostability and biocompatibility

Journal

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES
Volume 161, Issue -, Pages 1470-1474

Publisher

ELSEVIER
DOI: 10.1016/j.ijbiomac.2020.07.240

Keywords

Sodium alginate; Quantum dots; Mesoporous silica; Photostability; Cell viability

Ask authors/readers for more resources

We herein report the synthesis of CuInS2/ZnS (CIS/ZnS) quantum dots (QDs) via a greener method followed by sodium alginate (SA) passivation and encapsulation into mesoporous channels of amine modified silica (SBA15-NH2) for improved photostability and biocompatibility. The as-synthesized CIS/ZnS QDs exhibited near infrared emission even after SA passivation and silica encapsulation. Transmission electron microscopy (TEM) and Small angle X-ray diffraction (XRD) revealed the mesoporous nature of the SBA-15 remained stable after loading with the SA-CIS/ZnS QDs. The effective encapsulation of SA-CIS/ZnS QDs inside the pores of SBA15-NH2 matrix was confirmed by Brunauer-Emmett-Teller (BET) pore volume analysis while the interaction between the QDs and SBA15-NH2 was confirmed using Fourier transform infrared (FTIR) spectroscopy. The photostability of the QDs was greatly enhanced after these modifications. The resultant SA-CIS/ZnS-SBA15-NH2 (QDs-silica) composite possessed remarkable biocompatibility towards lung cancer (A549) and kidney (HEK 293) cell lines making it a versatile material for theranostic applications. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available