4.6 Review

Long-read sequencing to understand genome biology and cell function

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biocel.2020.105799

Keywords

Third-generation sequencing; Long-read sequencing; Nanopore sequencing; SMRT sequencing; Genomics

Ask authors/readers for more resources

Determining the sequence of DNA and RNA molecules has a huge impact on the understanding of cell biology and function. Recent advancements in next-generation short-read sequencing (NGS) technologies, drops in cost and a resolution down to the single-cell level shaped our current view on genome structure and function. Third-generation sequencing (TGS) methods further complete the knowledge about these processes based on long reads and the ability to analyze DNA or RNA at single molecule level. Long-read sequencing provides additional possibilities to study genome architecture and the composition of highly complex regions and to determine epigenetic modifications of nucleotide bases at a genome-wide level. We discuss the principles and advancements of long-read sequencing and its applications in genome biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available