4.4 Article

Scalable in-hospital decontamination of N95 filtering face-piece respirator with a peracetic acid room disinfection system

Journal

INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY
Volume 42, Issue 6, Pages 678-687

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/ice.2020.1257

Keywords

-

Ask authors/readers for more resources

The study successfully utilized an ultrasonic room high-level disinfection system for decontamination of large numbers of N95 respirators, achieving effective disinfection without adverse effects on mask filtration efficiency or material integrity.
Background: Critical shortages of personal protective equipment, especially N95 respirators, during the coronavirus disease 2019 (COVID-19) pandemic continues to be a source of concern. Novel methods of N95 filtering face-piece respirator decontamination that can be scaled-up for in-hospital use can help address this concern and keep healthcare workers (HCWs) safe. Methods: A multidisciplinary pragmatic study was conducted to evaluate the use of an ultrasonic room high-level disinfection system (HLDS) that generates aerosolized peracetic acid (PAA) and hydrogen peroxide for decontamination of large numbers of N95 respirators. A cycle duration that consistently achieved disinfection of N95 respirators (defined as >= 6 log(10) reductions in bacteriophage MS2 and Geobacillus stearothermophilus spores inoculated onto respirators) was identified. The treated masks were assessed for changes to their hydrophobicity, material structure, strap elasticity, and filtration efficiency. PAA and hydrogen peroxide off-gassing from treated masks were also assessed. Results: The PAA room HLDS was effective for disinfection of bacteriophage MS2 and G. stearothermophilus spores on respirators in a 2,447 cubic-foot (69.6 cubic-meter) room with an aerosol deployment time of 16 minutes and a dwell time of 32 minutes. The total cycle time was 1 hour and 16 minutes. After 5 treatment cycles, no adverse effects were detected on filtration efficiency, structural integrity, or strap elasticity. There was no detectable off-gassing of PAA and hydrogen peroxide from the treated masks at 20 and 60 minutes after the disinfection cycle, respectively. Conclusion: The PAA room disinfection system provides a rapidly scalable solution for in-hospital decontamination of large numbers of N95 respirators during the COVID-19 pandemic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available