4.3 Article

Increased O-GlcNAcylation induces myocardial hypertrophy

Journal

IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL
Volume 56, Issue 9, Pages 735-743

Publisher

SPRINGER
DOI: 10.1007/s11626-020-00503-z

Keywords

O-GlcNAcylation; Myocardial hypertrophy; Streptozotocin; PUGNAc; CREB

Funding

  1. Nantong Youth Medical Talents Support Program
  2. Nantong 226 High-level Talents Training Project
  3. Science Foundation of Nantong City [YYZ16022]
  4. Health Research grant of Nantong Commission of Health [2020JCC048]

Ask authors/readers for more resources

Myocardial hypertrophy is a common precursor of many diseases, and it can lead to myocardial ischemia and weaken cardiac contractility. High-sugar diets and diabetes are high risk factors for cardiac hypertrophy. O-GlcNAcylation, a dynamic and ubiquitous post-translational glycosylation of proteins on serine/threonine residues, has been usually considered as a nutrient sensor. Hyperglycemia, hyperlipidemia, and hyperinsulinemia lead to an enhancement of protein O-GlcNAcylation; however, whether excessive O-linked beta-N-acetylglucosamine (O-GlcNAc) glycosylation of proteins in cardiomyocytes causes cardiac hypertrophy remains unclear. In this study, we treated cultured primary cardiomyocytes or mice with streptozotocin (STZ) or PUGNAc, two inhibitors of O-GlcNAcase (OGA) to elevate cellular O-GlcNAcylation. We found that increased O-GlcNAcylation induced hypertrophy-like changes by detecting cardiomyocyte morphology or measuring the thickness of mice left ventricular wall with HE staining. The mRNA levels of cardiac hypertrophy-related genes, atrial natriuretic peptide (ANP) and beta-myosin heavy chain (beta-MHC), are increased in drug treatment groups. We further found that the increase of O-GlcNAcylation upregulated the activity of cAMP response element-binding protein (CREB) in cultured primary cells and in vivo by detecting the phosphorylation level of CREB by Western blot and the mRNA levels of CREB downstream targets C-fos and C-jun by RT-qPCR. These results suggest that the increased O-GlcNAcylation in cardiomyocytes is associated with cardiac hypertrophy both in cultured cells and in vivo, which provides possible intervention targets and approaches for the clinical treatment of myocardial hypertrophy triggered by high carbohydrate diets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available