4.7 Article

A Real-Time Game Theoretic Planner for Autonomous Two-Player Drone Racing

Journal

IEEE TRANSACTIONS ON ROBOTICS
Volume 36, Issue 5, Pages 1389-1403

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TRO.2020.2994881

Keywords

Aerial robotics; drone racing; game theory; motion and path planning; path planning for multiple mobile robot systems; vision-based pose estimation

Categories

Funding

  1. Toyota Research Institute (TRI)
  2. Office of Naval Research (ONR) [N00014-16-1-2787]
  3. National Defense Science and Engineering Graduate Fellowship
  4. ONR Global Grant [N62909-19-1-2027]
  5. Spanish Project (MCIU/AEI/FEDER, UE) [PGC2018-098719-B-I00]

Ask authors/readers for more resources

In this article, we propose an online 3-D planning algorithm for a drone to race competitively against a single adversary drone. The algorithm computes an approximation of the Nash equilibrium in the joint space of trajectories of the two drones at each time step, and proceeds in a receding horizon fashion. The algorithm uses a novel sensitivity term, within an iterative best response computational scheme, to approximate the amount by which the adversary will yield to the ego drone to avoid a collision. This leads to racing trajectories that are more competitive than without the sensitivity term. We prove that the fixed point of this sensitivity enhanced iterative best response satisfies the first-order optimality conditions of a Nash equilibrium. We present results of a simulation study of races with 2-D and 3-D race courses, showing that our game theoretic planner significantly outperforms amodel predictive control (MPC) racing algorithm. We also present results of multiple drone racing experiments on a 3-D track in which drones sense each others' relative position with onboard vision. The proposed game theoretic planner again outperforms the MPC opponent in these experiments where drones reach speeds up to 1.25m/s.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available