4.5 Article

Assessment of Joint Angle and Reach Envelope Demands Using a Video-Based Physical Demands Description Tool

Journal

HUMAN FACTORS
Volume 64, Issue 3, Pages 568-578

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0018720820951349

Keywords

ergonomics; physical demands; posture; artificial intelligence

Funding

  1. Mitacs Elevate program

Ask authors/readers for more resources

This study used a video-based method to assess occupational tasks and found a high level of agreement in joint angle and reach envelope estimates compared to motion capture methods, suggesting that it can improve accuracy and standardization.
Background Current methods for describing physical work demands often lack detail and format standardization, require technical training and expertise, and are time-consuming to complete. A video-based physical demands description (PDD) tool may improve time and accuracy concerns associated with current methods. Methods Ten simulated occupational tasks were synchronously recorded using a motion capture system and digital video. The tasks included a variety of industrial tasks from lifting to drilling to overhead upper extremity tasks of different cycle times. The digital video was processed with a novel video-based assessment tool to produce 3D joint trajectories (PDAi), and joint angle and reach envelope measures were calculated and compared between both data sources. Results Root mean squared error between video-based and motion capture posture estimated ranged from 89.0 mm to 118.6 mm for hand height and reach distance measures, and from 13.5 degrees to 21.6 degrees for trunk, shoulder, and elbow angle metrics. Continuous data were reduced to time-weighted bins, and video-based posture estimates showed 75% overall agreement and quadratic-weight Cohen's kappa scores ranging from 0.29 to 1.0 compared to motion capture data across all posture metrics. Conclusion and Application The substantial level of agreement between time-weighted bins for video-based and motion capture measures suggest that video-based job task assessment may be a viable approach to improve accuracy and standardization of field physical demands descriptions and minimize error in joint posture and reach envelope estimates compared to traditional pen-and-paper methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available