4.6 Article

Vertical cyclic loading response of geosynthetic-encased stone column in soft clay

Journal

GEOTEXTILES AND GEOMEMBRANES
Volume 48, Issue 6, Pages 897-911

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.geotexmem.2020.07.006

Keywords

Geosynthetic-encased stone columns; Cyclic loading; Model tests; Excess pore water pressure

Funding

  1. National Natural Science Foundation of China (NSFC) [51678231]
  2. Basal Research Fund Support by Hunan University

Ask authors/readers for more resources

Dynamic responses of the geosynthetic-encased stone column (GESC) supported embankment under traffic loads have become a hot topic. This study investigates the responses of GESC improved ground under vertical cyclic loading. A series of laboratory tests in a designed model test tank have been carried out with different loading parameters (varied loading amplitudes and frequencies), different column dimensions (varied encasement lengths and column diameters). In the tests, the soil-column stress distribution, accumulated settlement of loading plate, excess pore water pressure in the surrounding soil and lateral bulging of the stone column are monitored. Experimental results indicate that the vertical stress on the stone column increases with the increment of encasement length, and decreases with the increment of column diameter, loading amplitude and loading frequency. The increasing stress on the surrounding soil leads to a greater accumulated settlement of the loading plate and excess pore water pressure, while the increasing stress on the column leads to larger lateral bulging of the column. Excess pore water pressure dissipates effectively through vertical and horizontal drainage channels provided by the stone column and the sand bed. The geosynthetic encasement prevents the clay from obstructing the drainage channel by filtration and guarantees the drainage effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available