4.4 Article

Selection and Characterization of Mutants Defective in DNA Methylation in Neurospora crassa

Journal

GENETICS
Volume 216, Issue 3, Pages 671-688

Publisher

GENETICS SOCIETY AMERICA
DOI: 10.1534/genetics.120.303471

Keywords

cytosine methylation; heterochromatin; epigenetics; Neurospora

Funding

  1. National Institutes of Health (NIH) [R01GM035690, R35GM127142]
  2. NIH postdoctoral fellowship [F32GM097821]
  3. NIH predoctoral training grant [T32HD007348]

Ask authors/readers for more resources

DNA methylation, a prototypical epigenetic modification implicated in gene silencing, occurs in many eukaryotes and plays a significant role in the etiology of diseases such as cancer. The filamentous fungus Neurospora crassa places DNA methylation at regions of constitutive heterochromatin such as in centromeres and in other A:T-rich regions of the genome, but this modification is dispensable for normal growth and development. This and other features render N. crassa an excellent model to genetically dissect elements of the DNA methylation pathway. We implemented a forward genetic selection on a massive scale, utilizing two engineered antibiotic-resistance genes silenced by DNA methylation, to isolate mutants defective in methylation (dim). Hundreds of potential mutants were characterized, yielding a rich collection of informative alleles of 11 genes important for DNA methylation, most of which were already reported. In parallel, we characterized the pairwise interactions in nuclei of the DCDC, the only histone H3 lysine 9 methyltransferase complex in Neurospora, including those between the DIM-5 catalytic subunit and other complex members. We also dissected the N- and C-termini of the key protein DIM-7, required for DIM-5 histone methyltransferase localization and activation. Lastly, we identified two alleles of a novel gene, dim-10 - a homolog of Clr5 in Schizosaccharomyces pombe - that is not essential for DNA methylation, but is necessary for repression of the antibiotic-resistance genes used in the selection, which suggests that both DIM-10 and DNA methylation promote silencing of constitutive heterochromatin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available