4.7 Article

Parametric analysis of hydrogen two-stage direct-injection on combustion characteristics, knock propensity, and emissions formation in a rotary engine

Journal

FUEL
Volume 287, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.fuel.2020.119418

Keywords

Rotary engine; CFD modeling; Stratified combustion; Hydrogen two-stage direct-injection; Knock propensity

Funding

  1. National Natural Science Foundation of China [51976003]
  2. Beijing Lab of New Energy Vehicles [JF005015201901, JF005015201801]
  3. China Postdoctoral Science Foundation [2019TQ0012]

Ask authors/readers for more resources

The study explores a novel hydrogen injection strategy to improve the efficiency and reduce emissions of gasoline rotary engines. Through CFD modeling and experimental validation, it was found that two-stage direct-injected hydrogen significantly improves combustion characteristics and thermal efficiency.
Hydrogen two-stage direct-injection enrichment is a novel injection strategy to utilize hydrogen more efficiently and effectively in gasoline rotary engines by inheriting the merits of hydrogen and direct injection simultaneously, such as flexible control, efficiency improvement, and emissions reduction. Based on the CONVERGE code with detailed chemistry solvers, a full-cycle CFD modeling including hydrogen jet-flow and combustion processes was presented and validated by experimental data. To understand the role of hydrogen two-stage injection in improving engine performance at part-load and lean-burn regime, six different injection arrangements for which two-stage injection strategies with variable hydrogen amount for each pulse (up to 30% for postinjection) had considered. The different effects on species evolution, combustion characteristics, knock propensity, and emissions formation were analyzed step-by-step. The simulation results showed that compared with direct-injected hydrogen for single-pulse, injecting adequate hydrogen in the second pulse after spark-ignition onwards performed a significant beneficial effect on the mixture stratification and flame propagation, especially for the trailing part of the rotor chamber, which contributed to the improvement in both combustion characteristics and thermal efficiency. The assessment of knock propensity demonstrated that the two-stage direct-injected hydrogen had the potential of mitigating the knock under lean operations. Using split injection accompanied by an optimized hydrogen allocation strategy allowed substantial unburned hydrocarbon and carbon monoxide reductions with a slight nitrogen oxide penalty rate due to the elevated combustion temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available