4.7 Article

Identification of tuna protein-derived peptides as potent SARS-CoV-2 inhibitors via molecular docking and molecular dynamic simulation

Journal

FOOD CHEMISTRY
Volume 342, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.foodchem.2020.128366

Keywords

Molecular docking; Protein supplementation; M-pro; ACE2; Peptides

Ask authors/readers for more resources

This study identified a potential antiviral peptide from tuna protein, which could interact with Mpro and ACE2 targets through hydrogen bonds and electrostatic interactions, potentially inhibiting their activity.
The present study aimed to identify potential SARS-CoV-2 inhibitory peptides from tuna protein by virtual screening. The molecular docking was performed to elicit the interaction mechanism between targets (Mpro and ACE2) and peptides. As a result, a potential antiviral peptide EEAGGATAAQIEM (E-M) was identified. Molecular docking analysis revealed that E-M could interact with residues Thr190, Thr25, Thr26, Ala191, Leu50, Met165, Gln189, Glu166, His164, His41, Cys145, Gly143, and Asn119 of Mpro via 11 conventional hydrogen bonds, 9 carbon hydrogen bonds, and one alkyl interaction. The formation of hydrogen bonds between peptide E-M and the residues Gly143 and Gln189 of Mpro may play important roles in inhibiting the activity of Mpro. Besides, E-M could bind with the residues His34, Phe28, Thr27, Ala36, Asp355, Glu37, Gln24, Ser19, Tyr83, and Tyr41 of ACE2. Hydrogen bonds and electrostatic interactions may play vital roles in blocking the receptor ACE2 binding with SARS-CoV-2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available