4.7 Article

Pore-scale simulation of miscible displacement in porous media using the lattice Boltzmann method

Journal

COMPUTERS & GEOSCIENCES
Volume 88, Issue -, Pages 30-40

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.cageo.2015.12.014

Keywords

Lattice Boltzmann method; Miscible displacement; Viscous fingering; Variable fluid viscosities; Porous media; Micro-CT

Funding

  1. Xiangtan University [15QDZ45]

Ask authors/readers for more resources

A numerical model based on the lattice Boltzmann method is presented to investigate the viscous fingering phenomena of miscible displacement processes in porous media, which involves the fluid flow, heat transfer and mass transport. Especially, temperature- and concentration-dependent pore-fluid viscosity is considered. A complete list is derived and given for the conversion of relevant physical variables to lattice units to facilitate the understanding and implementation of the coupled problems involving fluid flow, heat transfer and mass transport using the LBM. To demonstrate the proposed model capacity, two different complex geometry microstructures using high resolution micro-computed tomography (micro-CT) images of core sample have been obtained and incorporated as computation geometries for modeling miscible displacement processes in porous media. The viscous fingering phenomena of miscible displacement processes are simulated in two different cases, namely in a channel and a porous medium respectively. Some influencing factors on the miscible displacement process, such as the pore-scale microstructure, Le number and Re number, are studied in great detail. The related simulation results have demonstrated that: (1) the existence of the pore-scale microstructure can have a significant effect on the front morphologies and front propagation speed in the miscible displacement process; (2) as the Le number increases, the fluid front and thermal front evolve differently, with the thermal front being less unstable due to more diffusion; (3) a larger Re number can lead to an increase in the propagation speed of the front. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available