4.5 Article Proceedings Paper

Computational analysis of wind-turbine blade rain erosion

Journal

COMPUTERS & FLUIDS
Volume 141, Issue -, Pages 175-183

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compfluid.2016.08.013

Keywords

Wind turbine; Blades; Rain erosion; SUPG and PSPG methods; PCT model

Funding

  1. Grants-in-Aid for Scientific Research [26220002, 16K13779] Funding Source: KAKEN

Ask authors/readers for more resources

Wind-turbine blade rain erosion damage could be significant if the blades are not protected. This damage would not typically influence the structural integrity of the blades, but it could degrade the aerodynamic performance and therefore the power production. We present computational analysis of rain erosion in wind-turbine blades. The main components of the method used in the analysis are the Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) stabilizations, a finite element particle-cloud tracking method, and an erosion model. The turbulent-flow nature of the analysis is handled with a RANS model and SUPG/PSPG stabilization, the particle-cloud trajectories are calculated based on the computed flow field and closure models defined for the turbulent dispersion of particles, and one-way dependence is assumed between the flow and particle dynamics. The erosion patterns are then computed based on the particle-cloud data. The patterns are consistent with those observed in the actual wind turbines. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available