4.7 Review

Single-cell multiomics: technologies and data analysis methods

Journal

EXPERIMENTAL AND MOLECULAR MEDICINE
Volume 52, Issue 9, Pages 1428-1442

Publisher

SPRINGERNATURE
DOI: 10.1038/s12276-020-0420-2

Keywords

-

Funding

  1. National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [NRF-2019M3A9B6066967, 2019R1A6A1A10073437]
  2. National Research Foundation of Korea [4199990314450] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Advances in single-cell isolation and barcoding technologies offer unprecedented opportunities to profile DNA, mRNA, and proteins at a single-cell resolution. Recently, bulk multiomics analyses, such as multidimensional genomic and proteogenomic analyses, have proven beneficial for obtaining a comprehensive understanding of cellular events. This benefit has facilitated the development of single-cell multiomics analysis, which enables cell type-specific gene regulation to be examined. The cardinal features of single-cell multiomics analysis include (1) technologies for single-cell isolation, barcoding, and sequencing to measure multiple types of molecules from individual cells and (2) the integrative analysis of molecules to characterize cell types and their functions regarding pathophysiological processes based on molecular signatures. Here, we summarize the technologies for single-cell multiomics analyses (mRNA-genome, mRNA-DNA methylation, mRNA-chromatin accessibility, and mRNA-protein) as well as the methods for the integrative analysis of single-cell multiomics data. Single-cell profiling: understanding disease at the cellular level The expansion of single-cell profiling technologies will provide unprecedented insights into the molecular mechanisms inherent in disease. Novel technologies known collectively as 'single-cell multiomics' enable systematic, high-resolution profiling of DNA, RNA and proteins in individual cells. This provides valuable data about gene regulation and molecular populations, and cellular processes during disease development and progression. Daehee Hwang and co-workers at Seoul National University, Seoul, South Korea, reviewed existing single-cell multiomics technologies and highlighted ways to integrate the data generated. Analytical features of multiomics allow scientists to isolate, sequence and label (or 'barcode') multiple molecules in single cells. Different sequencing techniques can be used for different purposes, such as exploring gene mutation coverage or measuring RNA transcripts. Combining these sequencing data will help identify links between significant features during disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available