4.7 Review

Single-cell sequencing techniques from individual to multiomics analyses

Journal

EXPERIMENTAL AND MOLECULAR MEDICINE
Volume 52, Issue 9, Pages 1419-1427

Publisher

SPRINGERNATURE
DOI: 10.1038/s12276-020-00499-2

Keywords

-

Funding

  1. JSPS KAKENHI [16H06279, 17H06306]
  2. Grants-in-Aid for Scientific Research [17H06306] Funding Source: KAKEN

Ask authors/readers for more resources

Here, we review single-cell sequencing techniques for individual and multiomics profiling in single cells. We mainly describe single-cell genomic, epigenomic, and transcriptomic methods, and examples of their applications. For the integration of multilayered data sets, such as the transcriptome data derived from single-cell RNA sequencing and chromatin accessibility data derived from single-cell ATAC-seq, there are several computational integration methods. We also describe single-cell experimental methods for the simultaneous measurement of two or more omics layers. We can achieve a detailed understanding of the basic molecular profiles and those associated with disease in each cell by utilizing a large number of single-cell sequencing techniques and the accumulated data sets. Single-cell sequencing: Greater insight through integrated data Combining data from different single-cell sequencing techniques could greatly improve understanding of the molecular profiles associated with disease. Sequencing studies provide valuable insights into diseased and healthy states at a single-cell level, for example the evolutionary paths of brain tumors and cancerous mutations. Ayako Suzuki at the University of Tokyo in Chiba, Japan, and co-workers examined the challenges of integrating data from various experimental and computational single-cell sequencing methods. These methods usually determine the genomic, epigenomic (DNA modifications) or transcriptomic (messenger RNAs) state of a cell, and can be combined to create a detailed picture. Other 'multiomics' techniques provide multilayered information from the same cell. The researchers recommend detailed analysis of individual data layers prior to integration, and highlight emerging techniques that analyze larger tissue sections, thus retaining the temporal and spatial information around a cell.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available