4.4 Review

Nuclear currents in chiral effective field theory

Journal

EUROPEAN PHYSICAL JOURNAL A
Volume 56, Issue 9, Pages -

Publisher

SPRINGER
DOI: 10.1140/epja/s10050-020-00230-9

Keywords

-

Funding

  1. Projekt DEAL

Ask authors/readers for more resources

In this article, we review the status of the calculation of nuclear currents within chiral effective field theory. After formal discussion of the unitary transformation technique and its application to nuclear currents we give all available expressions for vector, axial-vector currents. Vector and axial-vector currents are discussed up to order Q with leading-order contribution starting at order Q-3. Pseudoscalar and scalar currents will be discussed up to order Q0 with leading-order contribution starting at order Q-4. This is a complete set of expressions in next-to-next-to-next-to-leading-order (N3LO) analysis for nuclear scalar, pseudoscalar, vector and axial-vector current operators. Differences between vector and axial-vector currents calculated via transfer-matrix inversion and unitary transformation techniques are discussed. The importance of a consistent regularization is an additional point which is emphasized: lack of a consistent regularization of axial-vector current operators is shown to lead to a violation of the chiral symmetry in the chiral limit at order Q. For this reason a hybrid approach at order Q, discussed in various publications, is non-applicable. To respect the chiral symmetry the same regularization procedure needs to be used in the construction of nuclear forces and current operators. Although full expressions of consistently regularized current operators are not yet available, the isoscalar part of the electromagnetic charge operator up to order Q has a very simple form and can be easily regularized in a consistent way. As an application, we review our recent high accuracy calculation of the deuteron charge form factor with a quantified error estimate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available